ERC-20AI

ERC-20AI

The Al on Blockchain (EVM) Perspectives

: ) |
The Introduction.

Al enhances our J:lailly lives across various experiences. The concept of Al-driven

tokens represents a logical step forward in the evolution of blockchain and

. banking systems. To make this vision a reality, Al must either be deployed fully

on-chain or operate in a hybrid model with partial off-chain processing. However,

off-chain elements introduce vulnerabilities, making Al hosted directly on the

E}'hereum Virtual Machine (EVM) a more secure and viable solution for the near
lture. g -

The concept of ERC-20ai serves as a proof of concept for such technology. *
Imagine an Al that is fully deplufyed on-chain, beneﬁting_frnm the EVM’s guilt—in
resistance mechanisms and verifiability. While such a deployment is currently
impractical on Ethereum due to limitations in gas costs and processing power, it is
a possibility for the future as infrastructure evolves. b

On-chain Al could serve a wide range of purposes, from managing smart
contracts autonomously to generating images such as Al-generated NFTs, and
even producing unigue content directly on-chain. This content could have clearly
defined ownership to empower and protect creators.

- Introducing the first Al deployed on an EVM-compatible chain: a heural network
that generates images from input code, entirely on-chain!

+ i

Page |



.
The Neutant.
The first-born children of ERC-20AI to pave the way for many more previously

impossibly unique concepts. They are blessed with the lore of ruling their
Al-generated domain in creepy yet somehow still endearing ways.

The token.

This project consists of two parts: the token itself and the Al logic that powers it.
The token has a limited supply of 10,000 units, each with nine decimal places.
Every whole token encodes a unigue set of six numbers, suchas: 32145 6.
These numbers serve as input data for an on-chain AI model which generates a
corresponding image. The result is a unique Al-generated artwork that is
permanently tied to each token and cannot be replicated.

The "sauce'".

To preserve the unigueness and value of the Al-generated avatars, the system
includes a formula that decreases the chance of generating visually coherent
images after the first 10,000 have been created which represent the genesis set.
From there, a distortion factor, called seed addition, is applied to subsequent
generations. As this parameter increments over time, the more fragmented or
surreal the Dujclput becomes and the results can range from useless to
breathtaking. This 'sauce” ensures that early avatars remain collectible, while
later ones have the potential to grow increasingly rare with vivd structure and

clarity
 The Al

I used a simple Convolutional Neural Network (CNN) to generate the images
on-chain. The CNN was ported to Solidity and deployed on the blockchain. I will
explain the Al part on the next page.

Some of the early work in progress images:

= B - =
H B -

u"LlJ-E

B
1=
=]
3
h b 7
i




What is a CNN?

A Convolutional Neural Network (CNN) is a type of neural network designed to process data
with a grid-like structure, such as images. Unlike traditional fully-connected neural networks,
CNNs are optimized for recognizing spatial patterns by applying filters (also called kernels)
across input data.

These filters slide across the image, detecting low-level features like edges or textures in early
layers, and more complex patterns (such as shapes or structures) in deeper layers. This
hierarchical feature detection makes CNNs especially effective for tasks like image classification,
object recognition, and in this case, asset generation.

In my project, I trained a CNN on thousands of pixel art avatars, called Neutants. The model
learned to represent visual patterns in the form of weights and biases. I then ported the
trained CNN into Solidity and deployed it on-chain. When a token's six-number code is passed
as input, the CNN processes it through its layers to produce a unique 24x24 pixel image fully
on the EVM.

The result is a compact and efficient model, simplified enough to operate within the gas and
performance constraints of on-chain execution, yet robust enough to produce varied and
expressive outputs.

The Technical Concept.

To bring this project to life, I first ported the AI model to C# to ensure it functioned correctly.
Once everything worked as expected, I began translating it into Solidity for on-chain
deployment. The entire development process took about six months. The most challenging and
time-consuming part was training the Convolutional Neural Network (CNN). After many failed
attempts, I even paused the project for a month to dive deeper into AI concepts, at times
doubting whether the goal was achievable at all. But persistence paid off, and I finally reached
the results I had envisioned.

The initial concept was to generate high-resolution images, but that approach failed due to
EVM limitations. As a result, I reduced the final image size to 24x24 pixels, which still
represents a major achievement for fully on-chain AI image generation.

During the testing phase, I built a custom engine to simulate thousands of transactions on a
local testnet. This helped uncover potential bugs and edge cases under realistic conditions. It
was a long and challenging journey, and I hope users enjoy the results as much as I enjoyed
building them.

Before writing the complex algorithms for the blockchain and to ensure that the exported
parameters from the PyTorch-trained neural network were working correctly, I built a complete
neural network from scratch in C#. After thoroughly understanding the internal workings of the
Python-based model and confirming that the generation results matched, I was confident
everything was functioning as intended. Only then did I proceed with the blockchain porting,
which required implementing algorithms that execute through multiple transactions due to EVM
constraints.

Page 3



o Deeperinto Tech

The NeuralNetwork Contract.

CNN Architecture and On-Chain Execution

The Convolutional Neural Network (CNN) consists of 8 sequential layers, combining both
trainable and non-trainable components:

- Linear layer

- RelLU activation

- Linear layer

- RelLU activation

- Deconvolution layer

- RelLU activation

- Deconvolution layer

- Final ReLU activation (used for optimization and output shaping)

Out of these, four layers are trainable (two linear and two deconvolution layers), while the
other four are non-parametric ReLU activations that add non-linearity to the network.

Due to EVM gas limits, it is not feasible to run the entire network within a single transaction. To
solve this, I developed a specialized smart contract architecture that supports incremental
computation over multiple transactions. This allows the model to maintain intermediate state
on-chain and continue processing without exceeding gas constraints.

Model Training and Parameter Initialization
The network was trained using PyTorch, a powerful deep learning framewaork. After training, all
weights and biases were exported using a custom tool and transferred to Solidity contracts via
a series of setter functions:
- initialize_arrays — allocates memory and prepares internal structures
- set fc bias 0, set fc _bias 2 — biases for fully connected layers
- set fc weight 0, initialize fc weight 2, set fc_weight 2 — weights for fully connected layers
- set bias 0, set bias 2 — biases for deconvolutional layers
- set weight 0, set weight 2 — weights for deconvolutional layers
To avoid exceeding block gas limits during deployment, all parameter uploads are done in small

parts. Each function call sets only a subset of data, and the contract keeps track of progress to
ensure consistency. This makes the initialization process transparent, safe, and fully verifiable.

Page 4



The NeuralNetwork Contract.

On-Chain Inference Flow

Once all parameters are set, the network is ready for on-chain inference. Image
generation is performed in a series of step-by-step function calls:

forward1 - first linear layer with ReLU
forward? - second linear layer with RelLU

deconv_iterational_1, deconvl, calc_deconv_sublayer_expand_1 - first
deconvolution stage

deconv._iterational 2, deconv2, calc_deconv_sublayer _expand_2 - second
deconvolution stage

These functions are executed across multiple read transactions, with persistent
state between calls. This method allows complex Al inference to happen directly
within the blockchain, without requiring any off-chain computation.

JavaScript Library and Website Integration

To make on-chain image generation more accessible, I developed a dedicated
JavaScript library that mirrors the contract logic. It interacts with the deployed
smart contract, retrieves intermediate data, and reconstructs the final 24x24

image from the neural network’s output.

This library powers the project’s website, allowing users to visualize their
Al-generated avatars in real time based on token input. It serves both as a
frontend interface and a developer tool for exploring the power of on-chain Al.

The first images I could achieve during the early development stages:

=

EE EEEEENEDR S I E EEEEEEENE



PUST LRI TUM

The project is available on Uniswap V3 and

www.inscriptions.market for OTC deals.

Always yours; Todd Stoolf'"'_‘i_
Pageb





